
Vision-based Efficient Traffic Control and
Scheduling System for Smart City Intersections with

Emphasis on Emergency Vehicles

Mahdi Seyfipoor1, Sayyed Muhammad Jaffry2, Siamak Mohamadi3

1PhD Student at School of Electrical and Computer Engineering, College of Engineering,
University of Tehran, Iran

mahdiseyfipoor@ut.ac.ir
2Undergraduate Student in Computer Engineering at Faculty of Engineering, College of

Farabi, University of Tehran, Iran
smjaffry@ut.ac.ir

3Associate Professor at School of Electrical and Computer Engineering, College of
Engineering, University of Tehran, Iran

smohamadi@ut.ac.ir

Abstract

Smart cities move towards automating tasks to make people’s life easier. Signal-
ized intersections are one of the most common issues people face on a daily basis.
Using sensors to improve the time allotment for different roads at the intersection
can reduce waiting time for the vehicles, which can in turn reduce pollution and
simply help people reach their destinations faster. Leveraging computer vision can
aid in this process. We can use object detection to analyze the busyness of different
roads, emergency vehicles and accidents, to allocate suitable times to each road.
It can also help reduce collisions due to premature green lights, resulting in cars
entering the intersection crashing with those leaving it.

Keywords: Smart City, Computer Vision, Edge Computing, Traffic Lights.

1 Introduction
Smart cities are cities that use various sensors to provide its main operating systems with
real-time data. This may include water, sewerage, traffic, law enforcement, security and
surveillance systems [1]. The data that are collected can be used by city officials to aid
in decision-making, efficient resource allocation, troubleshooting, or automate certain
tasks. Automating the city’s traffic control system can have many benefits: improve
traffic flow, reduce CO2 emissions, and lower the travel-time of passengers. One of the
most valuable parts of a smart traffic control system, in controlling the intersections,

1

Proceedings | CYSP 2024 | University of Tehran | ■ 101

is using smart traffic lights. During different times of the day, traffic is distributed
differently. Therefore, using a static time allotment scheme, that does not change based
on the different circumstances, is inefficient. A dynamic time allotment policy takes into
account various parameters such as, the busyness of a road, emergency vehicles that are
arriving, and the cars in the intersection. Many countries have adopted some form of
smart traffic lights. The goal of such systems is to use data available at intersections
and roads to act like a traffic police officer, and hopefully better, since the officer may
not have as much data as a system does. The control that the system has over the road
needs to be backed by an accurate knowledge base, and these data can be obtained
using sensors, such as, cameras. The use of computer vision can help us design such
a system. It can conduct the necessary operations we require for a smart traffic light.
Using object detection, we can detect the busyness of a road, identify any emergency
vehicle (EV) and the path it is taking, and also find out if there are any cars in the
intersection.

2 Related Works
Azad and Ramazani [9] propose an algorithm based on Q-Learning combined with deep
neural networks, which resulted in a 34% decrease in queue waiting time. Wiering
[10] proposed reinforcement learning algorithms, which reduced average waiting times
by 25% in experiments where the cars were identical and travelled at similar speeds.
Ferreira [11] introduced a infrastructure-less, vehicle-to-vehicle-communication based
approach, and was able to show a reduction of CO2 emissions up to nearly 20%. Younes
and Boukerche [12] propose an arterial traffic light (ATL) controller, intelligent traffic
lights communicate with each other to generate an efficient traffic light algorithm for the
entire network. They also proposed intelligent traffic light controlling (ITLC) algorithm
which schedules each isolated traffic light efficiently, resulting in a 30% increase in traffic
flow fluency compared to the online OAF [13]. Gradinescu et al. [14] have also used a
similar approach, resulting in significant reductions in waiting time, fuel consumption
and pollutant emissions. Huang et al. [15] use syncronized timed Petri nets (STPN) to
design an urban traffic network control system. They use a modular technique so that
the network can be extended easily.

3 Methods
Our proposed smart traffic light control system consists of 4 units: Physical unit, object
detection unit, processing unit and scheduling unit. The physical unit controls the flow
of data from the sensors towards the object detection unit. It is the lowest level in the
system. The object detection unit is tasked with identifying different objects and their
count in the data provided by the physical unit. There are many models used for object
detection, most famously Single-Shot-Detectors (SSD) [2], Residual Networks (ResNet)

2

102 ■ | Proceedings | CYSP 2024 | University of Tehran

[3] and You-Only-Look-Once (YOLO) [4]. YOLO is well-known for its fast and efficient
performance, and lightweight versions of it such as YOLO-LITE [5] are used in em-
bedded and real-time systems. The processing unit will gather the information of the
vehicles, pedestrians, and active emergency vehicles, and process the information for the
scheduling unit, which will allot green light-times to each road in the intersection. The
units can be implemented in two major ways: edge computing (embedded), and server
processing. The former uses a processor embedded inside the device that is controlling
the intersection to store, process and analyze without using a dedicated external server,
and in the latter the data are sent to an external server which will send an output
back to the device [6]. Each method has its own advantages and disadvantages. In
edge computing, we do not rely on network or cellular connections to send and receive
information from the server, rather the device will compute the output on-site, making
it favorable for real-time applications [6]. Using edge computing is also better for se-
curity, is more cost-effective, and lower in power consumption compared to traditional
computing [6].

There is a lot of information that is available at an intersection. The data and
conditions that our scheduler requires are as follows: active emergency vehicles and the
roads they are approaching from, accidents that have occurred at the intersection or on
any roads connected to the intersection, the existence of cars in the intersection, the
number of cars on the roads connected to the intersection, and the pedestrians in or at
the intersection. The scheduler treats each of the roads and pedestrian crossings as a
set of tasks that need to be scheduled. Each of the roads and crossings (tasks) contain
conditions, which are basically the vehicles or pedestrians occupying it. It will prioritize
the roads based on the conditions as mentioned in table 1. The nature of the scheduler
is similar to that of a Round Robin scheduling policy [7] because we use a circular queue.
The difference is that each road will receive a time-slice that is decided by the conditions
mentioned above, i.e. busyness, EVs and accidents. The effect of accidents on traffic
and the proper methods of dealing with them need to be studied further, therefore in
this paper, we have focused on emergency vehicles. Ghazal et al. [8] propose using a
handheld controller to trigger the emergency vehicle protocol. This controller will be
used by the emergency vehicles approaching the intersection. We propose using object
detection to identify the emergency vehicles, but handheld devices can also be used to
assist decision making.

As we can see, the vehicles that are already inside the intersection hold the highest
priority, and will not be preempted by any other vehicles. A similar statement is also
true for pedestrians inside the intersection. If any task is scheduled to activate next, it
will have to wait until the higher priority tasks have been completed. A flowchart for
the general functionality of the system is provided in fig. 1.

In fig. 1, we see that if the system spots an EV (Emergency Vehicle), it will attempt
to open the signal for the road containing the EV, and keep that road open until
the EV crosses the intersection. We understand that this shift cannot always happen
instantaneously, as there may still be cars inside the intersection. Instead, the system

3

Proceedings | CYSP 2024 | University of Tehran | ■ 103

Table 1: Priorities of tasks in the scheduler, a greater priority shows higher importance

Conditions Priority
Vehicles/pedestrians inside the intersection 3

Emergency Vehicles 2
Vehicles/pedestrians at the intersection 1

Figure 1: Flowchart of the traffic control system

will initiate a closing process for the currently open road, which is explained in fig. 2.
It is important to note that the next road will open only once the safe closing process
is completed, meaning that the intersection is clear of vehicles and pedestrians. In the
scheduling process, the total period is divided among the roads, with busyness being
the main factor. Newly arriving vehicles may or may not extend the time of a signal,
but the signal will definitely stay open for a newly arriving EV.

Fig. 2 shows the safe road closing process. The light turns yellow for 3 seconds
before turning red, after which it checks whether the intersection is clear of vehicles and
pedestrians or not. The system will keep monitoring the intersection until it is empty.

We can define a syntax for possible scenarios: a road leading to an intersection Ii is
denoted by Li. The time remaining until the signal for Li turns to green is Ri(t). The
time remaining until the signal for Li turns yellow is Gi(t). Busyness can be measured
by a busy_factor, where the sum of the busy_factor of all the roads equals 1.

There are 3 main approaches we can take in order to schedule times for each road.
These approaches differ based on the total interval that is divided between the roads.
One approach is to have a constant interval or period, denoted by P . After P seconds,
the scheduler will reevaluate the intersection, and allot the times based on the new
conditions. In this approach the sum of green light-times of all the roads are equal
to P , such as shown in (1). Extending this approach can help us arrive at a superior
method, which is a preemptive version of the one we just mentioned, meaning that the

4

104 ■ | Proceedings | CYSP 2024 | University of Tehran

Figure 2: Safe road-closing process

scheduler will preempt the remaining allotted time to a task if it finishes prematurely.
This can also be implied by using accurate data and car speeds in the simpler method.

4∑
i=1

max {Gi(t)} =
4∑

i=1

window (Li) = P (1)

Allocated_Time = busy_factor × P (2)

Another approach is to use memory for the scheduler. This way, the scheduler
will remember the time allocation that was used during previous periods. If one road
had stayed open for much longer than usual due to reasons such as an EV or a crash,
the other roads will be compensated as they did not get a fair amount of time. The
drawback to this approach is that even though the scheduler tries to be fairer than
the first approach, this level of fairness may not be necessary most of the time, since
the other roads might not be as crowded as the road with the longest time-slice in the
previous period. Using memory can even cause a higher waiting time compared to not
using memory, because the conditions can completely change during an interval.

A third approach is to have a dynamic period, in which the sum of the time-slices
of the roads can vary depending on the conditions. For example, if all the roads leading
to an intersection are more vacant than usual, then using a constant period will have a
higher average waiting time for the vehicles at the intersection when compared to using
a shorter period. Using a dynamic period can help by reducing the waiting time for the
vehicles at an intersection. A question that naturally follows is how the period should
be calculated at each interval, for which we propose using a set of predefined periods
that can be used by the scheduler based on the current conditions. For example, an
intersection can use the following periods based on the conditions {60s, 100s, 120s, 180s,

5

Proceedings | CYSP 2024 | University of Tehran | ■ 105

300s, etc.}. If the intersection is relatively empty, the scheduler can choose a smaller
period so the utilization rate of the intersection stays high. From an OS perspective,
this is similar to assigning the CPU to a new task when a task finishes before the time
allotted to it ends, and in contrast to waiting for the allotted time to end, even if the
task finishes sooner than expected. Using predefined periods simplifies the scheduling
process, while providing a “good enough” scheduling scheme. Extending this idea, the
scheduling process itself can also use a smaller quantum of time, and each road receives
a multiple of the quantum. For Example, time-slices can be multiples of a 10 second
quantum.

One point to keep in mind is that an accident or the arrival of an EV can occur
at any time. If the system only updates the condition values after an interval, the
effectiveness of the scheduling scheme will be reduced, and may even prove to be counter-
productive to its objective. This leads us to constantly check for a change in high-priority
conditions, so the system can only take action if a condition, such as an EV or cars inside
an intersection, changes.

4 Simulation
We modeled the intersection as a task set, with each road leading to the intersection as
a task. The vehicles are subtasks, with the EV subtasks having the ability to preempt
other tasks in the intersection. While an EV subtask may not be the first subtask of
a task, the task will keep running until the EV subtask is completed. Table 2 contains
the information of the simulation setup. The simulation was done using Python. The
preemptive versions of the algorithms were simulated.

The set of periods available for dynamic period selection was {60, 90,120,180,240},
and the choice was uniformly spread over the busy_factor axis.

The results of the simulation suggested that there was not a huge difference among
the methods when it came to scenarios where the intersection was regarded as crowded.
The waiting time and total number of cars passed was also similar. The main reason
for this was that all 3 methods were preemptive in nature, meaning, that if there were
no more cars on a road, the scheduler would stop the execution of that task. On the
contrary, for simple traffic signals, the traffic light would keep on executing the same
task until the allotted time for it was over, which resulted in a waste of valuable time.

5 Conclusion
We introduced 3 approaches to schedule the allocation of the intersection to the roads
leading to it. The main points of difference in the methods were the use of memory
and the selection of the scheduling period. Using memory will incur a cost, and is not
needed anyways. Constantly gathering information causes all 3 methods to perform
similarly, and therefore the different periods will not affect the system greatly.

6

106 ■ | Proceedings | CYSP 2024 | University of Tehran

Table 2: Simulation Setup Parameters

Parameter Value
Period (not applicable to dynamic period) 240s

Time added per car 2s
Time it takes a car to cross the intersection 2s

Probability of new car arriving 10-40%
Probability of EV arriving 10%

References
[1] Moura, Filipe & de Abreu e Silva, Joao. (2021). Smart Cities: Definitions, Evolution of the

Concept, and Examples of Initiatives.
[2] Wei Liu et al, “SSD: Single Shot MultiBox Detector”, arXiv:1512.02325, 2015
[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, “Deep Residual Learning for Image

Recognition”, arXiv:1512.03385, 2015.
[4] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi, “You Only Look Once: Uni-

fied, Real-Time Object Detection”, arXiv:1506.02640, 2015.
[5] Jonathan Pedoeem, Rachel Huang, “YOLO-LITE: A Real-Time Object Detection Algo-

rithm Optimized for Non-GPU Computers”, arXiv:1811.05588, 2018
[6] K. Cao, Y. Liu, G. Meng and Q. Sun, ”An Overview on Edge Computing Research”, in

IEEE Access, vol. 8, pp. 85714-85728, 2020.
[7] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. 2012. Operating System Concepts

(9th ed.). Wiley Publishing.
[8] B. Ghazal, K. ElKhatib, K. Chahine and M. Kherfan, ”Smart traffic light control system”,

2016 Third International Conference on Electrical, Electronics, Computer Engineering and
their Applications (EECEA), Beirut, Lebanon, 2016, pp. 140-145.

[9] Azad, Seyedeh & Ramazani, Abbas. (2023). Smart control of traffic lights based on traffic
density in the multi-intersection network by using Q learning. Discover Artificial Intelli-
gence.

[10] Wiering, M.; Vreeken, J.; Van Veenen, J.; Koopman, A. Simulation and optimization of
traffic in a city. In Proceedings of the IEEE Intelligent Vehicles Symposium, Parma, Italy,
14–17 June 2004;

[11] M. Ferreira and P. M. d'Orey, ”On the Impact of Virtual Traffic Lights on Carbon Emissions
Mitigation”, in IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 1,
pp. 284-295, March 2012.

[12] M. Bani Younes and A. Boukerche, ”Intelligent Traffic Light Controlling Algorithms Using
Vehicular Networks”, in IEEE Transactions on Vehicular Technology, vol. 65, no. 8, pp.
5887-5899, Aug. 2016.

[13] K. Pandit, D. Ghosal, H. M. Zhang and C. -N. Chuah, ”Adaptive Traffic Signal Control
With Vehicular Ad hoc Networks”, in IEEE Transactions on Vehicular Technology, vol. 62,
no. 4, pp. 1459-1471, May 2013.

[14] V. Gradinescu, C. Gorgorin, R. Diaconescu, V. Cristea and L. Iftode, ”Adaptive Traffic
Lights Using Car-to-Car Communication”, 2007 IEEE 65th Vehicular Technology Confer-
ence - VTC2007-Spring, Dublin, Ireland, 2007.

7

Proceedings | CYSP 2024 | University of Tehran | ■ 107

[15] Y. -S. Huang, Y. -S. Weng and M. Zhou, ”Modular Design of Urban Traffic-Light Control
Systems Based on Synchronized Timed Petri Nets”, in IEEE Transactions on Intelligent
Transportation Systems, vol. 15, no. 2, pp. 530-539, April 2014.

8

108 ■ | Proceedings | CYSP 2024 | University of Tehran

